Telegram Group & Telegram Channel
πŸ’  Compositional Learning Journal Club

Join us this week for an in-depth discussion on Compositional Learning in the context of cutting-edge text-to-image generative models. We will explore recent breakthroughs and challenges, focusing on how these models handle compositional tasks and where improvements can be made.

βœ… This Week's Presentation:

πŸ”Ή Title: Divide, Evaluate, and Refine: Evaluating and Improving Text-to-Image Alignment with Iterative VQA Feedback

πŸ”Έ Presenter: Amir Kasaei

πŸŒ€ Abstract:
Recent advancements in text-conditioned image generation, particularly through latent diffusion models, have achieved significant progress. However, as text complexity increases, these models often struggle to accurately capture the semantics of prompts, and existing tools like CLIP frequently fail to detect these misalignments.

This presentation introduces a Decompositional-Alignment-Score, which breaks down complex prompts into individual assertions and evaluates their alignment with generated images using a visual question answering (VQA) model. These scores are then combined to produce a final alignment score. Experimental results show this method aligns better with human judgments compared to traditional CLIP and BLIP scores. Moreover, it enables an iterative process that improves text-to-image alignment by 8.7% over previous methods.

This approach not only enhances evaluation but also provides actionable feedback for generating more accurate images from complex textual inputs.

πŸ“„ Paper: Divide, Evaluate, and Refine: Evaluating and Improving Text-to-Image Alignment with Iterative VQA Feedback


Session Details:
- πŸ“… Date: Sunday
- πŸ•’ Time: 2:00 - 3:00 PM
- 🌐 Location: Online at vc.sharif.edu/ch/rohban


We look forward to your participation! ✌️



tg-me.com/RIMLLab/133
Create:
Last Update:

πŸ’  Compositional Learning Journal Club

Join us this week for an in-depth discussion on Compositional Learning in the context of cutting-edge text-to-image generative models. We will explore recent breakthroughs and challenges, focusing on how these models handle compositional tasks and where improvements can be made.

βœ… This Week's Presentation:

πŸ”Ή Title: Divide, Evaluate, and Refine: Evaluating and Improving Text-to-Image Alignment with Iterative VQA Feedback

πŸ”Έ Presenter: Amir Kasaei

πŸŒ€ Abstract:
Recent advancements in text-conditioned image generation, particularly through latent diffusion models, have achieved significant progress. However, as text complexity increases, these models often struggle to accurately capture the semantics of prompts, and existing tools like CLIP frequently fail to detect these misalignments.

This presentation introduces a Decompositional-Alignment-Score, which breaks down complex prompts into individual assertions and evaluates their alignment with generated images using a visual question answering (VQA) model. These scores are then combined to produce a final alignment score. Experimental results show this method aligns better with human judgments compared to traditional CLIP and BLIP scores. Moreover, it enables an iterative process that improves text-to-image alignment by 8.7% over previous methods.

This approach not only enhances evaluation but also provides actionable feedback for generating more accurate images from complex textual inputs.

πŸ“„ Paper: Divide, Evaluate, and Refine: Evaluating and Improving Text-to-Image Alignment with Iterative VQA Feedback


Session Details:
- πŸ“… Date: Sunday
- πŸ•’ Time: 2:00 - 3:00 PM
- 🌐 Location: Online at vc.sharif.edu/ch/rohban


We look forward to your participation! ✌️

BY RIML Lab


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/RIMLLab/133

View MORE
Open in Telegram


RIML Lab Telegram | DID YOU KNOW?

Date: |

Newly uncovered hack campaign in Telegram

The campaign, which security firm Check Point has named Rampant Kitten, comprises two main components, one for Windows and the other for Android. Rampant Kitten’s objective is to steal Telegram messages, passwords, and two-factor authentication codes sent by SMS and then also take screenshots and record sounds within earshot of an infected phone, the researchers said in a post published on Friday.

Telegram has exploded as a hub for cybercriminals looking to buy, sell and share stolen data and hacking tools, new research shows, as the messaging app emerges as an alternative to the dark web.An investigation by cyber intelligence group Cyberint, together with the Financial Times, found a ballooning network of hackers sharing data leaks on the popular messaging platform, sometimes in channels with tens of thousands of subscribers, lured by its ease of use and light-touch moderation.RIML Lab from ca


Telegram RIML Lab
FROM USA